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DELIVERABLE SHORT SUMMARY FOR USE IN 

MEDIA  

For the quantification of environmental sustainability, at least two aggregate 

variables require assessment at farm level or high spatial resolution: agricultural 

land use diversity, and soil erosion. Both aggregate variables are important 

metrics describing dimensions of the performance metrics for biodiversity 

conservation (land use diversity) and preservation of natural resources (soil 

erosion, quantifying the aggregate indicator ‘maintenance of soil fertility’). 

The estimation of these two aggregate variables at regional or national scale is 

not possible, as it would ‘average out’ and providing meaningless information. 

The CAPRI model has a long-term experience in calculating environmental 

indicators at high spatial resolution as detailed as 1x1 km (Britz and Leip, 2009; 

Leip et al., 2008, 2015, 2011a); however a need for updating the procedures and 

improving some of the algorithms was identified. 

This report describes how these updates and improvements are possible, 

focusing on three stages of the overall simulation framework: 

 Quantification of a priori crop shares  

 Disaggregation of crop yield and farm inputs 

 Quantification of potential loss of soil through water erosion 

Therefore, the quality of SUSFANS estimates of environmental sustainability, 

calculated with CAPRI, will be substantially higher than estimates previously 

available.  
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TEASER FOR SOCIAL MEDIA 

This deliverable is only relevant for readers who are really interested in technical 

details how statistical data available at regional scale in the CAPRI model are 

used to generate high quality agri-environmental indicators at high spatial 

resolution. Keep your interest and curiosity for SUSFANS results on spatial data 

of CAPRI simulations! 

The report describes basic features of the methodology, scrutinized deficiencies 

in the current implementation and identifies possibilities to update and improve 

the method. 

High quality, high resolution indicators allow to monitor the environmental 

integrity of agri-environmental policies at local conditions.     

 

Loss of #biodiversity and soil #erosion are amongst the biggest environmental 

challenges; their calculation in the CAPRI is improved.    
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ABSTRACT 

For the quantification of environmental sustainability, at least two aggregate 

variables require assessment at farm level or high spatial resolution: agricultural 

land use diversity, and soil erosion. We performed a thorough review of the 

procedures used to calculate environmental indicators at high spatial resolution 

with the CAPRI model. The need to update and improve was found for different 

stages of the procedure: 

 Quantification of a priori crop shares  

 Disaggregation of crop yield and farm inputs 

 Quantification of potential loss of soil through water erosion 

This report presents the results of feasibility studies on the possibility of 

improvements in those three stages. 

For the quantification of a priori crop shares, an update of the LUD model 

(Lamboni et al., 2016) is proposing several improvements on model 

performance and model quality, which overall were shown to generate better 

prediction both of ‘frequent’ and ‘less frequent’ crops; the latter mainly through 

the introduction of environmental suitability ranges. 

The disaggregation of crop yields can be improved through an update of the 

prior crop yield estimates obtained from a crop model, but in particular also 

through using results from the SUSFANS yield gap analysis. These results allow 

that the fertilization rates beyond crop needs can be ‘disconnected’ from crop 

yield and linked to the yield gap estimate at high spatial resolution, so that 

over-fertilization is estimated at those units where nutrient input does not limit 

crop growth. 

Potential soil losses by water erosion was found to be over-estimated for fallow 

land in non-arid regions. An update of the calculation procedure is proposed, 

accompanied with a comprehensive literature review not only on soil erosion in 

Europe for validating CAPRI estimates, but also on soil erosion thresholds that 

can be used to differentiate sustainable erosion rates from medium and severe 

erosion rates.  
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1 INTRODUCTION 

Agri-environmental indicators are suitable instruments to identify agri-

environmental problems, such as hot-spots, and to monitor changes in 

environmental quality and in the efficiency of agri-environmental policies (EC, 

2006). Quantifying agri-environmental indicators is a challenging task, in 

particular for large and heterogeneous regions such as the area covered by EU-

countries and if high spatial resolution is required. Indeed, many agri-

environmental threats ask for indicators at high spatial resolution or at scales 

that are different from administrative entities. Reliable agri-environmental 

indicators hinge on the availability of high-quality input data, which in those 

cases where national-scale data are insufficient often poses considerable 

problems. 

During the last decade, the partial equilibrium model for agriculture CAPRI (Britz 

and Witzke, 2014) was continuously extended towards the integration of agri-

environmental indicators in the modelling framework. In particular, this implied 

the development of a spatial layer into which regional data are disaggregated. 

Many agri-environmental indicators are depending on local environmental 

conditions and require the availability of data at high resolution. Also, it allows 

the quantification of indicators through linkage with biophysical models (Leip et 

al., 2008) or using detailed meta-models (Britz and Leip, 2009). 

Currently, CAPRI covers a full activity- and product-based GHG accounting 

system, calculates nitrogen balances and differentiated emissions of reactive 

nitrogen (N2O, NH3, NOx, NO3). The CAPRI-RD research project (2009-2013) 

included additional, such as the risk of soil erosion, biodiversity friendly farming 

practices, farmland bird index, agricultural landscape structure, and an indicator 

related to environmental compensation zones which were recently used for an 

assessment on the ‘greening of the CAP’ (European Commission, 2011). 

In the SUSFANS project, CAPRI is one of the economic models used in the 

SUSFANS toolbox (Rutten et al., 2016a, 2016b) and will provide both economic 

as well as environmental indicators (Götz et al., 2017). The CAPRI model is 

described in detail in previous SUSFANS deliverables (Götz et al., 2017; Rutten et 

al., 2016b); here the focus is on the spatial layer of CAPRI which was not yet 

addressed in the documents mentioned.  

Zurek et al. (2016 and Deliverable 1.3 forthcoming) define the environmental 

aspects (performance metrics) that are aimed at assessing the societal goal of 
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‘reducing environmental impacts’. This includes ‘climate stabilization’, ‘clean air 

and water’, ‘biodiversity conservation’, and ‘preservation of natural resources’.  

The objective of SUSFANS is the assessment of the agri-food system to 

contribute to the societal goals; most of the aggregated indicators required to 

perform this assessment can be quantified with the CAPRI model at the regional 

(NUTS2) level. However, two of the aggregate indicators require more detailed 

analysis: 

 Agricultural land use diversity where evaluation at regional level 

introduced an aggregation bias and cannot be used as a proxy for 

‘agricultural patchiness’ (Weissteiner et al., 2016) which on its own is used 

as a proxy for land use diversity (see Zurek et al., 2016 and Deliverable 1.3 

forthcoming). 

 Losses of soil organic carbon via water erosion largely depends on the 

local soil conditions (such as slope) in combination with crop cultivation 

and farm practices which require evaluation at high spatial resolution. 

Again, assessment at the aggregated level is not suitable for the 

quantification of soil erosion (Leip et al., 2015). 

The calculation of disaggregated indicators in CAPRI follows a sequential 

procedure as illustrated in Figure 1. First, crop shares are distributed in to the 

spatial units within an administrative region, using a priori land use shares and 

associated uncertainties, and available statistical data at NUTS2 and NUTS3 

level. Yield and irrigation levels are then subsequently estimated for each crop-

spatial unit combination on the basis of irrigation shares obtained from 

statistical surveys (EC, 2008, 2003a) and scientific assessments (Siebert et al., 

2007). These are combined with crop yields which were simulated for six crops 

(barley, grain and fodder maize, potatoes, pulses, sugar beet, sunflowers, and 

soft wheat) under irrigated and rain-fed conditions (Orlandini and van der Goot, 

2003). Livestock densities depend from fodder production, environmental and 

economic factors. Densities of land-based animals (ruminants) and land-free 

animals (monogastric animals) are regressed using animal numbers from the 

Farm Structure Survey (EC, 2003a). In a last step, farm management in terms of 

(mineral) N input is estimated on the basis of crop N requirements and N 

availability from atmospheric deposition, biological N fixation, crop residues, 

manure (as a function of livestock density, assuming transport of manure not for 

distances larger than 10 km). 

The resulting ‘data base’ is consistent with the parent CAPRI data at the regional 

scale (for any scenario that was used) and provides all the individual variables 
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required for the calculation of terrestrial agro-environmental indicators. 

However, each of these steps obviously introduces also an additional layer of 

uncertainty. It is therefore preferable to use indicators at highest aggregation 

level which is ‘fit for purpose’. As indicated above, the use of the CAPRI spatial 

layer is essential for the two variables ‘soil erosion’ and ‘land use diversity’. For 

other indicators linked to ‘emissions’ the spatial layer might be used to evaluate 

the probability distribution of the magnitude for an individual variable. 

 

 

Figure 1. Schematic representation of the disaggregation procedure in CAPRI.  

 

Even though the CAPRI spatial layer is operational (Kempen, 2013; Kempen et 

al., 2005; Leip et al., 2008, 2015, 2011a), Leip (2011b) identified the need for an 

update and scientific improvements: 

a) Update of the spatial layer, facilitating the link between agro-economic 

models, better alignment with INSPIRE guidelines, and climate models 

and extending the geographic scope to continental Europe.  

b) Updating and improving the a priori land use shares. 

c) Improving the distribution of farm inputs within an administrative region. 

d) Improving the quantification of agri-environmental indicators. 
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The process of implementing the necessary changes and developing new 

methodologies is an ongoing process and had been supported by a number of 

previous projects, including CC-TAME1, C-SCAPE2, GHG-EUROPE3, and imap84. 

Within these projects,  

 The update of the spatial layer (so-called Homogeneous Spatial Units, 

HSU) has been finalized. The HSU data set will be made available under 

the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 

license. For more explanation regarding the license5. The HSU data set 

has been already uploaded to PANGAEA6 data repository and the 

publication process is ongoing. In parallel, a publication with a detailed 

description of the HSU data set (mapping methodology and underlying 

data sets) is in preparation. PANGAEA ensures a permanent link to the 

data set and ensures that the data can be referred to by a unique DOI 

(Digital Object Identifier) and be cited similar to a publication in a journal.  

 A new Land Use Disaggregation (LUD) model was developed (Lamboni et 

al., 2016). However, this model still had some quality deficiencies in 

predicting non-frequent land uses due to the presence of ‘outliers’ in the 

predictions (Lamboni et al., 2016). The first objective of this SUSFANS 

deliverable is to advance with the LUD model and improve the a priori 

land use shares to be used in the CAPRI disaggregation model (see 

section 2) 

 Input of nitrogen to the crops depends currently on crops nutrient 

requirements (which is linked to crop yields) but is not further 

differentiated; thus within a region, the level of ‘over-fertilization’ is 

independent from the ‘yield gap’. In practice, one would expect a large 

yield gap might be correlated with lower (over) fertilization rates than a 

situation with a lower yield gap where nutrient limitations are largely 

eliminated. The second objective of this SUSFANS deliverable is 

therefore to use results from the SUSFANS yield gap analysis 

(Zimmermann and Latka, 2017) (see section 3). 

                                                   
1
 http://www.cctame.eu/index.html  

2
 Contract JRC Ref nº 31699-2010-09 TPW ISP, Project “Accounting for Carbon and GHG Emissions” (C-

SCAPE) with the Norwegian Agricultural Economics Research Institute (NILF) 
3
 FP7 EU contract No. 244122. http://ghg-europe.eu/index.php  

4
 Administrative Agreement NºAGRI-2015-0213-JRC Nº33919-2015-06 between DG Agriculture and Rural 

Development and the Joint Research Centre 
5
 see e.g. http://creativecommons.org/licenses/by-nc-sa/4.0/  

6
 https://pangaea.de/  

http://www.cctame.eu/index.html
http://ghg-europe.eu/index.php
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://pangaea.de/
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 Furthermore, the indicator describing the potential for soil erosion by 

water has been checked and found to be overestimating soil erosion on 

fallow land in non-arid regions. The third objective of this SUSANS 

deliverable was thus to do an update of this indicator (see section 4). 
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2 IMPROVING A PRIORY CROP SHARE 

ESTIMATES  

Authors: Adrian Leip, Xavier Rotllan-Puig 

2.1 Introduction 

The first step in the spatial disaggregation of CAPRI regional data and the 

calculation of agri-environmental indicators at high spatial resolution is the 

provision of good a priori crop shares for each spatial unit. CAPRI so far uses an 

agricultural land use map developed in the CAPRI-DynaSpat project (Kempen, 

2013; Kempen et al., 2005; Leip et al., 2008) which is based on statistical 

information collected around the year 2000. The JRC has started working on an 

updated and improved land use share map on the basis of more recent data 

(2008-2010) (Lamboni et al., 2016).  

The results were compared with land use observation at high resolution for 

France, using data from the LPIS data base (Cantelaube and Carles, 2015). This 

gave confidence in the performance of the model for the frequent crops, while 

the model still had some quality deficiencies in predicting non-frequent land 

uses due to the presence of ‘outliers’ in the predictions (Lamboni et al., 2016). 

For the use of the CAPRI spatial layer in the SUSFANS project, it is therefore 

crucial to continue this work and improve the model as proposed by Lamboni et 

al. (2016) by better constraining un-frequent crops. 

 

2.2 Improvements of the LUDM 

2.2.1 The Land Use Disaggregation model 

The Land Use Disaggregation model (LUD) model developed by Lamboni et al. 

(2016) spatially disaggregates agricultural land use data from a coarse-scale 

(e.g. administrative region, NUTS2) into the finer-scale Homogenous Spatial 

Units (HSU), a grid cell of 1 km x 1 km, or a collection of these grid cells having 

similar properties (Leip et al., 2011b). In other words, LUD predicts the 

agricultural land-use areas within each HSU for the EU-28 countries.  

LUDM combines available statistical data on land-use at NUTS2 and NUTS3 level 

and point-based observations of land-use from the LUCAS survey (EC, 2003b), 
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which allows to link land use choices with environmental (climate, soil, and land 

cover classes) and topographical information (relief).  

The model uses a three-step approach as shown in Figure 4 of the paper. 

 Step 1: develops a multinomial logit model estimating the land use under 

given environmental conditions and farm gate prices for certain 

agricultural products, using LUCAS point land use observations. Results 

are prior estimates of model parameters. Lamboni et al. (2016) derived 

one vector of model parameters for each NUTS2 region. 

 Step 2: improves the model parameters using a Bayesian approach and 

on the basis of the land use distribution within the NUTS2 over the 

NUTS3 regions. In this step, crops that have not been included in the first 

step are included in the model. This steps results also in predicted land 

use shares for all spatial units. 

 Step 3: takes up the predictions from Step 2 and constrains them in order 

to match them with statistical data at NUTS3 level. Also known shares of 

area which is of non-agricultural use are fixed; the authors assume that 

forest area (Kempeneers et al., 2013; Pekkarinen et al., 2009) is accurate 

and therefore not available for agricultural land use. Step 3 results in final 

land use shares which can be used by the CAPRI disaggregation model as 

a priori estimates (Britz et al., 2011). 

The model was tested on LPIS data available for France. As can be seen in Figure 

5 of the paper below, the model performed very well for frequent crops such as 

rapeseed where Figure 9 of the paper shows the spatial distribution of rapeseed 

in France in the LPSI data and in the disaggregation results. 
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Figure 2. Fig4 of Lamboni et al (2016) 
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Figure 3. Fig5 of Lamboni et al (2016) 
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Figure 4. Fig9 of Lamboni et al (2016) 

As the authors pointed out, LUD model predicted accurately the main land uses 

of the NUTS2 region. However, caution needed to be taken with predictions of 

non-frequent crops and/or crops requiring specific cultivation conditions. Such 

model limitations were probably due to the presence of outliers in the regional 

(NUTS2) data used to develop it. Potential solutions to improve its accuracy 

were related to the inclusion of agronomic constraints in the explanatory 

variables or giving capacity to the model to make predictions from sub-regional 

data (e.g. NUTS3; Lamboni et al., 2016).  

This is discussed as follows:  
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“The process of the prediction of land-use areas involves a combination of 

different input variables such as altitude, slope, rain and land cover (CORINE) 

classes. While the rain can be more important for growing cereals for instance, it 

can be less important in the case of rice (as the rice field is often irrigated) and in 

the case of some permanent crops like olive. Our model predicts some small area 

of cereals like maize or wheat also at altitudes which are not suitable for growing 

cereals in Europe. Equally, the model predicts small area of rice when the slope is 

relative high. These results seem to be unrealistic as the rice field requires flat 

terrain for irrigation purpose. Although we have distinguished the individual 

CORINE classes for rice and olive as explanatory variables, the model still faces 

some difficulties to better predict these non-frequent crops. These miss-predictions 

are likely due to:  

i) using only one set of model parameters at NUTS2 level to predict all 

the results in different locations (HSUs) of the NUTS2 region. Indeed, 

rice, olive and wheat can be seen in one sub-region (NUTS3 for 

instance) and not at all in others sub-regions of the same NUTS2 

region;  

ii) not including, in this paper, agronomic constraints for the suitability or 

limits of growing certain crops under certain environmental conditions;  

iii) using a land cover classes (corine) of year 2006;  

iv) using a non-informative prior for the crops which are not found in the 

first step. 

The objective of the current study is to overcome these deficiencies. In addition, 

efforts are made to improve the performance of the model.  

Note that part of the work described below had already been started under the 

imap8 project mentioned above. However, most of the work on the model’s 

performance (2.2.2) and in particular the – most important - work on the 

environmental limits (2.2.3.3) was entirely done under the SUSFANS project. 
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2.2.2 Improvements on performance (required CPU time) 

Given the high resolution and big extension of the study area (EU-28), it is 

essential to minimise the process time (CPU time). With this purpose, the main 

improvements included to the LUD model were changing some R packages and 

instructions used, which are less time-consuming especially for such big 

datasets. The two main R packages included in the process were data.table 

(Dowle and Srinivasa, 2016) and mnlogit (Hasan et al., 2016). Also, the first step 

of the model (see Figure 4 of Lamboni et al. 2016 above) was found to be the 

most computer resource intensive, as the logit model has to be generated 

several times until the optimum bandwidth is found, with some bottlenecks on 

which code improvements could focus. 

On the one hand, with data.table all operations made on large tables (e.g. read, 

join, add/modify/delete columns by group) are drastically faster. 

On the other hand, mnlogit, a package for estimation of multinomial logit 

models using maximum likelihood, was used instead of nnet (Venables and 

Ripley, 2002) for two reasons. The first was because it is more time and memory 

efficient (see Hasan et al. 2016 for packages comparisons, also with nnet). The 

second reason is because mnlogit deals internally with correlated explanatory 

variables, while in nnet it needs to be done separately. It calculates their 

correlation and removes the ones more correlated, with a level of tolerance 

defined by the user. 

Besides that, the source code was improved at several places. One of the most 

important was the re-coding of the quantification of the weights given to the 

LUCAS point within the maximum bandwidth (loweight.r in the original source 

code) replacing a loop with direct formulae. Figure 5 shows time requirement (s) 

for different bandwidths. The time required for the new piece of code was far 

below 1 s. 
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Figure 5. Time requirement (s) for different bandwidths 

 

2.2.3 Improvement on quality  

2.2.3.1 Optimum bandwidth – Selection criterium 

The ‘optimum bandwidth’ is an important parameter in the LUD model as it 

determines how many observations (= LUCAS points) are used in the first step 

to parameterize the model. In principle, the larger the bandwidth the better the 

accuracy (as more points are taken under consideration) but this has two 

drawbacks:  

(i) As one model is generated for each NUTS2 region, an increase of the 

bandwidth beyond the borders of the NUTS2 region ‘dilutes’ regional 

characteristics not included in the model explanatory variables but 

potentially influencing farmers choices for crop (e.g. infrastructure, market 

access for certain crops, local cultural / traditional preferences …). 

(ii) Required computing resources increase dramatically with the bandwidth. 

 

Therefore, a performance criterion is used to determine the ‘optimum’ 

bandwidth. As performance indicator, the F-measure is used. The F-measure is a 

harmonic mean between the precision and recall or sensitivity. The precision (P) 

is the ratio of observations that have been well predicted to the total number of 

predictions of a certain land use. The recall (R) for that land use is the number of 

well-predicted observations to the total number of observations of the land use. 

The F-measure can have values between 0 and 1: 

𝐹 = 2 𝑥
𝑃 ⋅ 𝑅

𝑃 + 𝑅
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The F measure is quantified for all land uses.  

For the final performance indicator however different possibilities exist:  

(a) quantify the final score as average (or weighted average using the share of 

observations for each land use as weight) for all land uses available in the model 

(micro F-measure) or  

(b) quantify the final score as (weighted) average over by a pre-defined 

selection of crops, for a example the crops occurring within a maximum 

bandwidth. This is called macro F-measure.  

The micro F-measure optimizes the LUDM for the land uses around the center 

of each NUTS2 region. The macro F-measure penalizes models that exclude 

crops which are contained in the pre-selection.  

The model as proposed by Lamboni et al. (2016) used the micro F-measure to 

improve model speed, at the cost of not considering less-frequent crops in the 

model at the first step. The LUDM was modified so that the macro F-measure 

was used on the basis of the share of all crops occurring in the NUTS2. This 

forces the model to ‘grow’ until all crops with a significant share in the NUTS2 

are included and overcomes the problems mentioned above that some crops 

which are concentrated in some areas distant from the center of the NUTS2 

might be excluded so that no model estimate exists after the first step. 

In order to not test bandwidths that are unlikely to perform well, a criterion was 

included to check the number of crops and Corine land use classes. In the 

original version, the minimum number was set to three for both criteria. A 

further criterion was the variance for the explanatory variables (regressors), as 

the model can only be built if for each regressor at least two observations exist 

in the sample. 

The minimum number of crops that need to be in the sample has been linked to 

all observations in the NUTS2 region, such that all ‘major crops’ in the region 

need to be included in the model. Major crops are identified which occupy at 

least one permille of the land (estimated from the number of observed 

occurrences in the LUCAS points) or – for NUTS2 regions with less than 2000 

observation points, all crops with at least two observations. 
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2.2.3.2 Optimal bandwidth – Iteration 

The original of the LUDM used a minimum and a maximum potential bandwidth 

and looped through the calculation of the F-measure score with a predefined 

bandwidth step to identify the optimum bandwidth for each NUTS2 region. 

Table E3 of the paper shows the min and max potential bandwidths by country 

as well as the bandwidth step and the range of optimum bandwidths found 

across all NUTS2 regions in a country. 

This approach has been found to be inefficient as tests needed to be performed 

beyond the optimum bandwidth. The approach has been replaced by an 

iterative method. The concept of the iteration is simple: the F measure score is 

quantified for three equidistant bandwidths (b1, b2, b3) using a relatively large 

step width (db1). If a bandwidth at the edge scores best, then a next bandwidth 

outside the range is added, otherwise new intermediate bandwidths are added. 

This continues until the (predefined) minimum step width has been reached and 

thus the optimum bandwidth found. 

There is however not a unique relationship between a bandwidth and the F 

measure determined for a specific NUTS2 region. For each bandwidth, the 

sample of observation is split into 2 groups; while 80% are lumped and used for 

the calibration of the multilogit model, the remaining 20% is used to validate 

the model and to calculate the F measure score. This is repeated until a stable F 

measure (mean) is obtained (i.e. an F measure with a requested precision which 

is calculated as a function of the current step width (delta bandwidth) and a pre-

defined minimum requested variance (0.01) and a maximum allowed variance 

(0.015). As seen in Figure 6 depending on the sample the F measure (here 

Fnuts2 as defined above) scatters considerably and a stable F measure is 

obtained in this example only after several repetitions of the validation 

procedure. 
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Figure 6. Evolution of the mean of an F measure until stabilizes 

Table 1. Table E.3 of Lamboni et al (2016) 

 

 

2.2.3.3 Introducing of environmental limits for crop allocation 

One of the main limitations of the LUD model already described by their authors 

was the necessity of including agronomic/environmental constraints to the 

predictions. Or in other words, LUD sometimes predicted some crops/land-uses 

in places where the environmental conditions were not suitable for those crops 

to grow. This happened mainly for non-frequent crops such as rice, vineyards 

and olive groves, and also sometimes for sunflowers, but not only. Thus, the 

objective of this part was to calculate the ranges of each explanatory variable 

included into the model for each crop or land-use. Such ranges represented the 
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maximum and minimum environmental conditions needed for each crop or 

land-use to grow. 

The ranges for each crop/land-use were derived from the range observed in the 

LUCAS points and calculated from the whole EU. Some tests were run to check if 

the results were better with ranges calculated for each NUTS2 region. No 

significant differences were observed. In addition, it makes more ecological or 

agronomical sense to calculate them for wider regions such as the entire 

Europe, or at least for eco-regions.  

Once these "environmental constraints" were calculated, they were used to 

remove the out-of-range predictions from the set of predictions obtained at the 

end of the Step 2 of LUDM. The reason for implementing it in this point, and not 

at the end of the modelling process, was because doing so the contribution of 

the Step 3 was kept, as the purpose of the Step 3 is to refine the final results so 

that they match another known data in a different scale (statistics at NUTS3 

level in our case).  

2.2.3.4 Other secondary improvements 

Another secondary development of the model was the scaling of the 

explanatory variables. As advised in nnet documentation and in the literature, 

the explanatory variables should be roughly scaled to [0,1], otherwise the model 

fitting would be slow or might not even converge at all. 

2.3 Results and discussion 

Table 2 shows the results of a time comparison between nnet, mnlogit and the 

original LUD model. This comparison was done for the Step 1, the most time 

consuming, and for one NUTS2 region of France (FR10). Even with all the quality 

improvements included in the model explained above, running LUD model with 

mnlogit is faster on average. 

 

Table 2. Time comparison beetwen nnet (nnet_x(1)), mnlogit (mnlogit_x(1)) and the original LUD 

model (mati(1)) for one NUTS2 region of France (FR10). neval is the number of times that the 

expression was evaluated. Time units in seconds 

 
 

expr

mnlogit_x(1)1

min

nnet_x(1)2

lq

mati(1)3

mean

 640.7908

median

 296.7388

uq

1217.0835

max

 738.4014

neval

 492.9698

1226.1828

1112.846

1248.989

1258.643

 954.0632

1710.1651

1238.4757

1528.374

1809.940

1277.640

1702.602

1935.130

1333.831

5

5

5
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To assess the quality of the model predictions, we used independent data from 

the Land Parcel Identification System (LPIS) for France (Cantelaube and Carles, 

2015). This is the best high-resolution data available so far. The LPIS data were 

re-mapped from parcel level into the HSU.  

As the land-uses for LPIS data and LUD predictions were not exactly 

corresponding, we re-classified some of them in order to be comparable. Finally 

we obtained nine different land-uses as seen in Table 3. 

 

Table 3. Link between land-uses of LPIS and LUD used to assess the model quality 

Land-use codes LPIS land-uses LUD land-uses 

PARI Rice Rice 

SUNF Sunflowers Sunflowers 

VINY Vineyards Vineyards 

LRAPE Rape and turnip seeds Rape and turnip seeds 

OLIVGR Olive groves Olive groves 

OTHC Common wheat, other cereals Wheat, triticale, oats, rye, other 

cereals 

BARL Barley Barley 

GRAS Mountain pasture / heathland, 

permanent grassland 

Grassland with sparse tree/shrub 

cover, grassland without tree/shrub 

cover, spontaneously vegetated 

surfaces 

LMAIZ Maize Maize 

 

To be consistent with the methodology used in Lamboni et al. (2016), we used 

the weighted predictor error (Chakir, 2009) to check the quality of the 

improvements included in LUD compared with the original model. The errors 

terms were calculated as follows: 

 

where âh,l  is the predicted area of a given land-use within the HSU, ah,l the 

observed land-use area, ah the area of a HSU and Hn the number of HSUs in a 

given region (NUTS3). 

To avoid the effect of the outliers, which affect both the mean and the 

maximum values, during this section we will focus on the median of these errors 



SUSFANS 

 

Report No. D4.6 

 

 

26 

 

for the analysis. In addition, it has to be noted that the smallest HSU has an area 

of 100 ha (or 1 km2). Thus, for instance, median errors on the order of 2 hectares 

would mean that more than 50% of the errors are under this value, which could 

be considered good predictions. 

Firstly, we assessed the quality of the model after including two levels of 

developments. The first level of development was the new method to select the 

optimal bandwidth explained in sections 2.2.3.1 and 2.2.3.2. The second level 

was including also the function mnlogit instead of nnet/multinom for the 

estimation of multinomial logit models. We run the tests for the entire France. 

See the highest median errors in Table 4. 

For grasslands, rapeseed and other cereals, the results with both new levels of 

developments were considerable better compared with the original model, yet 

minimizing the errors with mnlogit. Barley also gave better results using mnlogit 

than the original. On the other hand, olive graves, rice and vineyards gave worse 

results with the new developments, although keeping them around 1 hectare. 

Finally, maize and sunflowers using mnlogit gave errors about 5 and 2 hectares, 

which are still acceptable if we bear in mind that the minimum area of the HSUs 

is 100 ha. 

Therefore, looking globally at these results could be said that the new 

developments improved the predictions of the more frequent land-uses and 

kept the non-frequent ones at low levels. 

Table 4. Highest median error terms for the original LUD model and using the new method to 

select the optimal bandwidth with nnet and mnlogit (Highest Median LUD-orig, Highest Median 

nnet and Highest Median mnlogit, respectively) for France. Results in ha. 

 
 

Secondly, to assess the effect of including environmental constraints for the 

land-use predictions of the model, we focussed on the region of France that 

Crop

BARL1

Highest Median LUD−orig

GRAS2

Highest Median nnet

LMAIZ3

Highest Median mnlogit

LRAPE4

OLIVGR5

OTHC6

PARI7

SUNF8

VINY9

  3.150

100.000

  3.634

100.000

  0.000

100.000

  0.000

  0.027

  0.028

 6.403

11.585

 3.103

 6.062

 0.028

14.413

 0.000

 2.355

 2.554

1.985

9.959

5.078

4.647

0.937

5.628

0.937

2.129

1.381
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shows more land-use predictions out of their environmental range (FR71). The 

model that includes constraints performed better for most of the crops, 

including the less frequent sunflower and vineyard (see Table 5). 

Table 5. Comparison of median errors for model with and without including environmental 

constraints to the crop predictions for the region FR71. Results in ha. 

 
 

Figure 7 shows the spatial distribution of the shares of sunflower observations 

(LPIS; Fig. 7A) and predictions, both before (Fig. 7B) and after (Fig. 7C) the 

inclusion of environmental constraints to the modelling process, in FR71. Both 

prediction maps show substantial similarities with observations (Figures 7 D and 

E) indicating good performance of the disaggregation models. However, the 

map after including the environmental constraints shows a pattern of fewer 

differences with observations (more green surface; Fig 7E) than the map without 

including such constraints (Fig 7D). 

 

Crop

BARL1

Highest Median No Constraint

GRAS2

Highest Median With Constraint

LMAIZ3

LRAPE4

OLIVGR5

OTHC6

PARI7

SUNF8

VINY9

0.205779146

4.185099234

0.491291088

0.009458955

0.000000000

0.656160956

0.000000000

0.068053302

0.035583687

0.13171947

3.68112016

0.43337197

0.02577970

0.00000000

0.52134567

0.00000000

0.03166883

0.01191906
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Figure 7. Distribution of shares of sunflowers in FR71. (A) Observation data (LPIS) and predictions of the 

model, (B) without and (C) with the inclusion of environmental constraints to the estimates. Maps D and E 

show the difference between observations and predictions 

As in this region we did not have presences of olive groves and very few of rice, 

we checked the result for these non-frequent land-uses in FR81. The median for 

these two was zero, so we calculated percentiles 90 in order to be able to 

compare errors with and without including constraints. Table 6 shows that the 

error terms for olive groves were virtually the same and for rice it was slightly 

better for the model including environmental constraints.  

Table 6. Comparison of percentile 90 errors for model with and without including environmental 

constraints to the crop predictions for the region FR81. Results in ha. 

 
 

Finally, Figure 8 provides the summary (median, 3rd quartile and max) of the 

error terms for the NUTS2 regions of France after including environmental 

constraints and using mnlogit. It can be seen that, while median and 3rd quartile 

for all the regions and all the crops were close to zero, there still were several 

outliers. 

Crop

OLIVGR5

Percentile 90 No Constraint

PARI7

Percentile 90 With Constraint

0.7006

0.3273

0.7006

0.3179
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Figure 8. Summaries (median, 3rd quartile and maximum) of the error terms for the NUTS2 regions of 

France. Units in ha 

However, the presence of such extreme predictions was improved for some 

crops in FR71 after restricting them with environmental constraints (Figure 9A 

and Figure 9B, without including environmental constraints and including them, 

value
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respectively). This pattern is clear for all the land-uses except for vineyards and 

grasslands, although the former corrected some of them. 

 

A B 

  
Figure 9. Scatter plots of the predicted and the observed data for FR71 (A) without including 

environmental constraints and (B) including them. Blue points are the scatter plots of observations 

versus predictions and pink points are the plot of observations versus observations. Units in ha 

 

2.4 Conclusions 

The main objective of this study was to improve the LUD model, both regarding 

its performance and its quality of the predictions, to contribute to the general 

objective of having an updated and improved land use share map to be 

implemented in CAPRI. 

Regarding the improvement of its performance, the new developments included 

in the Step 1 of the model reduced considerably the process time. Although the 

Step 1 is the more resource consuming, some improvements could still be 

implemented specially in the Step 3, adapting it to work with data.tables and 

finding alternative R functions/packages more resource-efficient.  
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With regard to the improvement of the quality of the results, the mnlogit 

function for the estimation of multinomial logit models, together with the new 

procedure to select optimal bandwidths, give as good results for frequent crops 

as the original LUD model, or even a bit better for some crops. On the other 

hand, also the less-frequent crops show some improvements thanks to the 

inclusion of the environmental constraints to the crops/land-use predictions. In 

addition, the presence of outliers in the predictions has been reduced as well, 

although some of them can still be found. 

After including some of the possible improvements pointed out by Lamboni et 

al. (2016) and others, the main objective of the study has been achieved. 

However, there are still misspredictions of the model that might be due to 

different reasons. On the one hand, exists uncertainty on both the data used to 

fit the model (from FSS), especially for non-frequent crops, and on the data to 

validate its predictions (LPIS). The use of other data to validate the model could 

give the possibility to check the results for other crops that now are not 

available. On the other hand, fitting one model for each smaller sub-regions 

instead of one for each NUTS2 might also significantly increase the accuracy of 

the model. This could be done, however, only if data at a finer scale than at 

NUTS3 level becomes available. 
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3 IMPROVING DISAGGREGATION OF YIELD AND 

FARM INPUTS IN CAPRI  

Authors: Markus Kempen and Adrian Leip 

3.1 Introduction 

Organic and mineral fertilizer application rates are a highly relevant factor for 

environmental impacts of agricultural production as they drive realized crop 

yields and nutrient surpluses, and consequently the whole nutrient and carbon 

cycle in agriculture. 

The CAPRI disaggregation procedure of inputs and outputs from (statistical) 

data at Nuts2 level to a spatial layer (HSMU or HSU) generally combines two 

steps: 

(1) prior expectation on inputs and outputs coming from various sources (e.g. 

crop simulation models, statistical analysis) and  

(2) a reconciliation procedure minimizing differences from the prior 

expectations while achieving consistency with the more aggregate Nuts2 data.  

The crop yield estimation combines different types of a priori information in a 

Bayesian estimation framework (HDP, Highest Posterior Density, Heckelei et al., 

2008) to derive simultaneously spatially explicit yield estimates and irrigation 

shares per crop (Kempen et al., 2005). Regression models based on FAO and FSS 

data on irrigation are used to forecast the irrigated share per crop and HSMU. 

Prior information on yields is taken from crop model results on potential and 

water limited yield (MARS-CGMS model). 

After the consistent disaggregation of crops yields, the application rates of 

organic and mineral fertilizer rates are determined. Crop uptakes are derived 

from yields assuming (so far) a linear dependency of yield and fertilizer 

application. Organic fertilizer rates are derived from estimated, spatially explicit 

animal numbers. Following, expected mineral fertilizer application rates are 

calculated to “fill up” the expected total needs. At sub-regional level, the organic 

and inorganic application rates per crop are defined as to recover in average the 

ones at regional level. Hence over (or under) fertilization of crops is taken into 

account in the final result. 

The findings in the following chapters often suggest an update of the prior 

information, while the design of the reconciliation procedure can be maintained. 
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3.2 Crop yield 

3.2.1 Analysis of current methodology 

The current CAPRI methodology uses yield potential and water limited yield 

potential from a crop simulation model (applied by MARS unit around 2005) as 

prior information for a data consistent disaggregation at Nuts2 level. Following 

current literature (e.g. Grassini et al., 2015), yield potential (Yp) is defined as the 

yield of an adapted crop cultivar as determined by  

 solar radiation,  

 temperature,  

 carbon dioxide,  

 and genetic traits that govern length of growing period, light 

interception by the crop canopy and its conversion to biomass, and 

partition of biomass to the harvestable organs water (van Ittersum and 

Rabbinge, 1997).  

Water-limited yield potential (Yw) is determined by these previous factors and 

also by water supply amount and distribution during the crop growth period 

and field and soil properties that affect soil water availability such as slope, 

plant-available soil water holding capacity, and depth of the root zone water 

(Lobell et al., 2009; van Ittersum and Rabbinge, 1997; van Ittersum et al., 2013).  

For a specific location and year, the crop yield gap (Yg) is defined as the 

difference between Yp (irrigated systems) or Yw (rainfed) and average actual 

farm yield (Ya).  
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Figure 10. Relation of yield potential, water limited yield potential, actual yield and yield gap. Adapted from 

van Ittersum et al. (2013). 

Several methodologies have been proposed and applied to estimate Yp and Yw 

and subsequently Yg. van Ittersum et al. (2013) compared several 

methodologies and concluded that the application of crop growth models 

allows for the most robust estimation of Yp and Yw. Consequently, the CAPRI 

disaggregation procedure, using yield potential and water limited yield potential 

from a crop growth model as prior information, can be seen as “state of the art”. 

However, validation of CAPRI results for Germany reveal some inconsistencies of 

actual results and the “yield gap” concept. 



SUSFANS 

 

Report No. D4.6 

 

 

35 

 

 

Figure 11. Actual yield, yield potential and water limited yield potential in the CAPRI base year data 

2008 for soft wheat.  

 

Figure 12. Yield gap compared to water limited yield potential and yield potential in the CAPRI base year 

data 2008 for soft wheat.  

The actual yield Ya stems from a disaggregation procedure using simulated 

yield (MARS) at HSMU level and actual yield at Nuts2 coming from statistical 

data. In Germany cereals are typically cultivated as rain fed crops, so comparison 

can focus on Ya and Yw. The spatial pattern of Ya and Yw differ significantly at 

country level. While the actual yield tends to be higher in the northern part of 
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Germany, the water limited yield potential is supposed to be higher in the 

southern part. Within Nuts2, the pattern of MARS is recovered, but “scaled” to 

match the Nuts2 totals. This can result sometime in abrupt changes in HSMU 

yields along administrative boarders (see e.g. the northers boarder of Bavaria). 

The contradictious data for Ya and Yw result in negative yield gaps in larger 

parts of northern Germany. As the statistical data on administrative regions 

influences the final result of Ya in the HSMUs significantly the result of Ya might 

be reliable for the analysis currently done with the spatial CAPRI data. As the 

statistical data on Nuts2 can be assumed to be reliable, the discrepancies might 

stem from the (outdated) simulations run of the crop growth model.  

Figure 13 compares the actual CAPRI results with more recent MARS-CGMS 

yields as used during the FRAGARIA contract. The shortcomings described 

before are not visible in this comparison. 

 

Figure 13. Actual yield, yield potential and water limited yield potential in the CAPRI base year data 2008 

and MARS-CGMS yields used in the FRAGARIA service contract.  

3.2.2 Updates 

The prior information coming from crop simulation models is updated using the 

MARS-CGMS simulated yields used during the FRAGARIA contract (Pérez-Soba 

et al., 2015). 

The general approach using simulated crops yield in in line with 

recommendations found in literature. The quality of simulated crop yields 

should be regularly updated. Maybe it could be helpful to have time series of 

crops yields. The historic data in the CAPRI data base could then be linked to 
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the actual whether is those years, while for future projections a “average” 

whether might be preferable. 

3.2.3 Results 

The calculation of prior expectations of crop yield in spatial units is based now 

on crop model simulation results as used in the Fragaria service contract and 

regional yield gap averages coming from Zimmermann and Latka (2017). 

Technically the CAPRI model can switch between the updated and the standard 

calculation of priors.  

The prior expectations differ significantly between the two specifications since 

Zimmermann and Latka (2017) predict that realized is in a range of 60-90% of 

the potential/water limited yield. As the high posterior density (HPD) 

downscaling procedure consolidates the priors for spatial units with the same 

average realized yield for administrative regions the difference in the final, data 

consistent spatial yield is nonetheless relatively small. 

In the updated version the final result is close to the prior expectation, which is 

transparently calculated based on improved plant growth modelling and 

empirical studies. When the final result differs significantly from the prior 

expectation (as it did before), specification of objective function and constraints 

in the HPD framework significantly influence the final result. The decisions on 

the model specification were partially arbitrary and the calculations of the solver 

are to some extend a “black box”. Replacing a “by chance” good working 

consolidation procedure by a transparent, scientifically based prior calculation is 

the core improvement of the spatial yield data base in CAPRI 

3.3 Linking fertilizer and other inputs to the yield gap 

3.3.1 Analysis of current methodology 

According to literature the yield gap depends on natural conditions. Van Bussel 

(2015) deals with upscaling yields from sample regions to national level. More 

observations of yield gap in different natural conditions reduce error in 

predicting yield gap at national level. These findings might be useful “vice versa” 

when downscaling from Nuts2 to HSMU. Currently the disaggregation 

procedure tends to adjust the HSMU priors by the same percentage value to 

meet the observed Nuts2 totals.  

In SUSFANS it is aimed to regress actual yield (or yield gap) of FADN farms on 

natural conditions. FADN data is used in combination with climate and location 
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data to determine a production function for actual yield depending on potential 

yield and inputs (see Figure 14) (Zimmermann and Latka, 2017) 

 

Figure 14. Concept of the frontier analysis in SUSFANS (Zimmermann and Latka, 2017) 

3.3.2 Updates 

Estimated coefficients were applied to the natural conditions in the HSMU 

resulting in estimates of the yield gap. Following, the prior for each HSMU is 

calculated as (water limited) yield potential minus expected yield gap. The 

natural conditions (temperature, radiation, precipitation) used by Zimmermann 

(2017) show a significant statistical impact on the yield gap at European scale. 

When disaggregating yields from Nuts2 to spatial layers, the variation of these 

natural conditions (and following the expected yield gap) among spatial units is 

rather small. 

In the CAPRI disaggregation procedure the required fertilizer and other inputs 

(e.g. plant protection) are generally assumed to be proportional to the crop 

yield. In case of N fertilizers, a more sophisticated model accounts for effects of 

soil types and share of manure.  

In case of fertilizer application, the aggregate statistical data often reports 

inputs that are higher than the actual requirements of the crops. In this case the 

disaggregation procedure would result (more or less) in a uniform percentage 

increase of fertilizer input per crop and ha. According to the literature on “yield 

gap”, a yield gap is a consequence of limitation of nutrition, pests and diseases.  

Following, a high yield gap would indicate that the inputs by the farmer 

(fertilizer, pesticides) are low. Consequently, no oversupply of fertilizer is 
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expected. When the actual yield comes close to the (water limited) yield 

potential, there will be no limitation of nutrients and oversupply is possible and 

more likely. However, no evidence for this can be found in literature so far.  

Fertilizer and plant protection inputs are explanatory variables (xi). In case of 

significant estimates for the corresponding coefficients, this production function 

is then be used to calculate the expected input use depending on actual yield 

and yield potential in the spatial unit. 

Another issue concerning the disaggregation of inputs is the transport of 

manure. The transport of manure between Nuts2 regions is actually not 

considered in the CAPRI data. Partially data on manure transport is available for 

specific regions (see Table 7). The manure flow from Netherlands to North Rhine 

Westphalia is probably the most important flow between Nuts regions in 

Europe. It can be seen that some communes (Kleve, Viersen, Heinsberg) have 

significant imports of manure. However, it has to be discussed whether these 

local transport of manure plays a role at European scale. 

The environmental legislation in several countries limits the application of 

manure per ha (e.g. at 170kg N from manure in Nitrate vulnerable zones). This is 

so far only partially taken into account when transport of manure is allowed to 

neighboring HSMU. A fixed upper limit was not included before, but is likely 

that the control- and sanction systems of “cross compliance” enforces that these 

rules are observed. 
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Table 7. Manure import from Netherlands to North Rhine Westphalia. (taken from 

https://www.umwelt.nrw.de/fileadmin/redaktion/4_guelleimporte_niederlande.pdf) 

 
The disaggregation procedure of fertilizer inputs is extended to consider various 

aspects when determining the expected input per HSMU and crop:  

(1) relation of yield gap and fertilizer input,  

(2) transport of manure and  

(3) environmental legislation.  
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This makes the calculation of the prior expectation more complex than is most 

other cases, where the prior is usually a crude value coming from one other 

source. Hence, a “pre model” is developed to account for all these aspect when 

setting the prior expectation. Other inputs will still be distributed proportional 

to the actual yield since no better (quantifiable) methodology was found so far. 

The “final” disaggregation step can then be unchanged. 

3.3.3 Results 

Zimmermann and Latka (2017) used singe farm data from the FADN to estimate 

effects of climate and management data on the yield of soft wheat (SWHE), 

barley (BARL), maize (MAIZ), potato (POTA) and as EU-wide (where available) 

case study soybean (SOYA).  The explanatory variables considered for 

determining the frontier yields are a trend (YEAR), precipitation (PREC), radiation 

(RAD) and temperature (TEMP). The management variables considered are 

economic farm size (ESU), fertilizer expenditure per ha (FERT) and plant 

protection expenditure per ha (PROTEC). Due to limited data availability, just the 

fertilizer and plant protection expenditure per total Utilized Agricultural Area 

(UAA) per farm could be used.  

 
       

 
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jtr jtr jtr jtr
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with ,  

      1 2 3jtr jtr jtr jtri ESU FERT PROTEC      

Given the formulation of the estimation model the coefficients of the variables 

can be interpreted as follows: 

1. Frontier variables (log-log): Coefficients give percent change of yield for a 

percent change in frontier variables (YEAR, PREC, RAD, TEMP). 

2. Management variables (log-linear): Coefficients give percent change of 

yield for a unit change of management variables (ESU, FERT, PROTEC); in 

the formulation as used here, management variables are subtracted, i.e. 

the sign of the actual impact is exactly the opposite. 

The estimates of the coefficients of the management variables δ2 and δ3 can be 

used to predict inputs of fertilizer and plant protection in spatial units. In the 

following results are shown in Table 8 for the example of δ2 (FERT) and barley 

(BARL). 
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Table 8. Calculation of marginal efficiency of additional fertilizer input 

    from estimation model effects of increasing FERT by 1€ 

region crop 
Yield               

(% of max.) 
δ2 

FERT        
(mean) 

FERT            
(% diff) 

Yield           
(% diff.) 

required FERT  
as % of 

additional FERT 

50 BARL 87,1% -0,0022 96,3 1,0% 0,2% 21,4% 

60 BARL 87,1% -0,0062 85,3 1,2% 0,6% 53,1% 

90 BARL 88,9% -0,0081 90,9 1,1% 0,8% 73,2% 

113 BARL 79,4% -0,0036 114,8 0,9% 0,4% 41,6% 

115 BARL 76,9% -0,0017 79,7 1,3% 0,2% 13,6% 

116 BARL 83,3% -0,0089 73,9 1,4% 0,9% 65,7% 

136 BARL 79,4% -0,0036 97,2 1,0% 0,4% 35,2% 

153 BARL 77,6% -0,0033 80,6 1,2% 0,3% 26,6% 

163 BARL 80,8% -0,0025 113,5 0,9% 0,2% 28,0% 

182 BARL 70,6% -0,0033 111,0 0,9% 0,3% 37,2% 

183 BARL 74,7% -0,0075 91,6 1,1% 0,8% 68,9% 

184 BARL 74,2% -0,0058 67,1 1,5% 0,6% 38,6% 

192 BARL 73,6% -0,0077 99,6 1,0% 0,8% 76,3% 

193 BARL 75,5% -0,0089 72,0 1,4% 0,9% 64,3% 

201 BARL 66,1% -0,0121 48,0 2,1% 1,2% 58,0% 

222 BARL 74,3% -0,0034 97,5 1,0% 0,3% 32,9% 

244 BARL 75,7% -0,0026 149,2 0,7% 0,3% 39,1% 

250 BARL 86,7% -0,0202 32,2 3,1% 2,0% 65,2% 

260 BARL 74,5% -0,0064 79,1 1,3% 0,6% 51,0% 

270 BARL 71,0% -0,0099 55,0 1,8% 1,0% 54,5% 

281 BARL 80,1% -0,0046 96,0 1,0% 0,5% 44,3% 

282 BARL 75,7% -0,0095 65,2 1,5% 0,9% 61,7% 

291 BARL 80,3% -0,0051 51,3 1,9% 0,5% 26,3% 

292 BARL 80,9% -0,0020 87,6 1,1% 0,2% 17,4% 

301 BARL 83,2% -0,0041 42,3 2,4% 0,4% 17,5% 

302 BARL 81,7% -0,0022 72,1 1,4% 0,2% 15,7% 

303 BARL 76,3% -0,0081 70,6 1,4% 0,8% 57,1% 

340 BARL 78,8% -0,0031 124,3 0,8% 0,3% 38,0% 

360 BARL 79,5% -0,0019 120,4 0,8% 0,2% 23,3% 

380 BARL 82,1% -0,0031 126,2 0,8% 0,3% 39,7% 

411 BARL 84,3% -0,0085 101,2 1,0% 0,8% 85,7% 

413 BARL 81,9% -0,0050 94,5 1,1% 0,5% 47,5% 

421 BARL 81,5% -0,0022 99,7 1,0% 0,2% 21,8% 

431 BARL 84,2% -0,0021 96,8 1,0% 0,2% 20,1% 

515 BARL 83,2% -0,0050 141,2 0,7% 0,5% 71,2% 

530 BARL 66,6% -0,0154 59,2 1,7% 1,5% 91,0% 

540 BARL 60,7% -0,0074 51,3 1,9% 0,7% 37,9% 

545 BARL 72,5% -0,0029 82,4 1,2% 0,3% 23,9% 

550 BARL 89,4% -0,0135 39,1 2,6% 1,3% 52,6% 

555 BARL 74,7% -0,0109 46,9 2,1% 1,1% 51,2% 

560 BARL 70,9% -0,0072 52,0 1,9% 0,7% 37,3% 

Source: Zimmermann and Latka (2017), own calculation for selectet regions 
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The estimated coefficient δ2, estimated yield and observed fertilizer 

expenditures are taken from Zimmermann and Latka (2017). Then the 

percentage change in expenditures for fertilizer and yield are calculated for an 

increase of fertilizer expenditures by 1 Euro. The percentage change in 

expenditures for fertilizers should be equivalent to the percentage change in 

applied quantity. As the requirements for nutrients are proportional to the yield, 

the percentage changes in yield and fertilizer expenditures should be identical 

under ideal conditions. However, in practice probably not all fertilizer applied by 

the farmer is finally taken up by the plant. Hence we define the ratio of 

percentage change in expenditures and percentage change of yield as the 

“efficiency” of additional applied fertilizer.  

Conceptually this efficiency should not be below 0% or above 100%. As the 

calculation is based on a regression analysis, a few outliers are not in this range 

and were removed. The average over all regions the marginal efficiency of 

additional fertilizer is about 40% at the currently observed realized yield. It 

should be noted, that this is not the overall efficiency of fertilizer applications.  

 

Figure 15. Efficiency of additional fertilizer (y axis) compared to realized yield (x axis) – own calculation 

Figure 15 shows the efficiency of additional fertilizer compared to the realized 

yield in selected European regions. A linear trend suggests that the efficiency of 

additional fertilizer decreases with increasing yield. The calculations based on 

empirical analysis are in line with our theoretical considerations on the relation 

between yield gap and fertilizer application (see section 3.3.2).  
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The regression results are used to calculate the prior expectation of fertilizer use 

in spatial mapping units. This calculation of prior expectations is so far realized 

as an alternative option in the CAPRI downscaling procedure. 

3.4 Conclusions 

The concept of downscaling yield and fertilizer inputs, using a high posterior 

density estimator to line up spatially explicit priors with administrative data, can 

be maintained. The methodology of deriving prior information can be improved 

using new findings in research. Crop growth models calculating potential and 

water limited yield have been improved and a new data set is included now. 

Results of yield gap estimations at regional scale can be used to derive expected 

realized yields at grid level. The distribution of fertilizer can also be changed 

based on yield gap estimates. In the previous methodology surplus of fertilizer 

was allocated proportional to the nutrient needs of the crops. In the updated 

allocation procedure fertilizer surplus is more likely to occur for crops showing a 

low yield gap. In case of high yield gaps the fertilizer gifts should be close to the 

crop needs. The rules for estimating manure applications are revised and 

account now for the limits given by environmental legislations. Transport of 

manure across mapping units is allowed. In administrative regions with very 

high animal numbers transport of manure to neighboring regions is made 

possible.  
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4 IMPROVING ESTIMATES OF SOIL LOSS 

CALCULATED WITH CAPRI  

Authors: Maria Bielza (JRC) 

4.1 Introduction 

Soil erosion, as characterised by the widely used RUSLE equation, is determined 

by two groups of factors. The first group can be identified as biophysical factors 

and is represented as RKLS, which is the product of the factors for rainfall-runoff 

(R), soil erodibility (K) and length and steepness of slope (LS)). This product had 

been computed at 1Km cell EU27 grid by JRC/SOIL_ACTION. It had been 

averaged at HSMU level and included in CAPRI in 2012. 

The second group consists of the cover, management and support practices 

factors (C and P factors). The C-factor can be subdivided in Ccrop/cover x 

Cmanagement: 

𝐶𝑓𝑎𝑐𝑡𝑜𝑟 = 𝐶𝑐𝑟𝑜𝑝/𝑐𝑜𝑣𝑒𝑟 ∙ 𝐶𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡  

These factors had been improved during the imap-8 project. This approach, 

however was overestimating soil erosion in fallow land in non-arid regions, 

where GAEC does not require a green cover but there is a natural green cover 

during summer due to climatic conditions.  

4.2 Methods 

The  𝐶𝑀𝑠𝑢𝑚𝑚𝑒𝑟𝑐𝑜𝑣𝑒𝑟
𝑀𝑆,𝑓𝑎𝑙𝑙

  factor with a value of 0.5 should be extended to all non-arid 

regions. An additional improvement was therefore necessary. This was done 

based on the aridity index (P/PET). The aridity index is calculated as the 

coefficient between the annual precipitation and the annual ETP. A region is 

considered arid when the index is lower or equal to 0.5.  

For this reason, the arid regions, on which 𝐶𝑀𝑠𝑢𝑚𝑚𝑒𝑟𝑐𝑜𝑣𝑒𝑟
𝑀𝑆,𝑓𝑎𝑙𝑙

 = 0.94 will be only a few 

Mediterranean regions (shown on Table 9). Where half of the region area is arid, 

an intermediate value of 0.72 has been applied. For the rest of the regions, the 

Csummercoverfactor takes the value of 0.5. 
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Table 9 Values for CMsummercover 

Code Region name CMsummercover 
CY00 CY00 - Kypros 0.94 

EL11 EL11 - Anatoliki Makedonia, Thraki 0.72 

EL12 EL12 - Kentriki Makedonia 0.94 

EL14 EL14 - Thessalia 0.94 

EL24 EL24 - Sterea Ellada 0.72 

EL30 EL30 - Attiki 0.94 

EL41 EL41 - Voreio Aigaio 0.94 

EL42 EL42 - Notio Aigaio 0.94 

EL43 EL43 - Kriti 0.94 

ES22 ES22 – Com. Foral de Navarra 0.72 

ES23 ES23 - La Rioja 0.94 

ES24 ES24 - Aragón 0.94 

ES30 ES30 - Comunidad de Madrid 0.94 

ES41 ES41 - Castilla y León 0.94 

ES42 ES42 - Castilla-la Mancha 0.94 

ES43 ES43 - Extremadura 0.94 

ES51 ES51 - Cataluña 0.94 

ES52 ES52 - Comunidad Valenciana 0.94 

ES53 ES53 - Illes Balears 0.94 

ES61 ES61 - Andalucía 0.94 

ES62 ES62 - Región de Murcia 0.94 

FR83 FR83 - Corse 0.94 

ITF4 (IT91) ITF4 - Puglia 0.72 

ITG1 (ITA0) ITG1 - Sicilia 0.94 

ITG2 (ITB0) ITG2 - Sardegna 0.94 

MT00 MT00 - Malta 0.94 

PT15 PT15 - Algarve 0.94 

PT18 PT18 - Alentejo 0.94 

RO22 (RO02) RO22 - Sud-Est 0.94 

 

4.3 Validation of the CAPRI average soil erosion 

indicator 

The values obtained with CAPRI for potential soil erosion are shown on Table 10. 

The CAPRI results show a UAA weighted average value for EU-28 close to 5.3 

t/ha. For comparison, other average values for soil erosion found in the 

literature are:  
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• 17 t/ha/yr for arable soils in Europe, based on plot data (Pimentel et al., 

1995) 

• 11.1 t/ha/yr of average value of soil erosion by water for Europe (Yang et 

al., 2003) 

• 8.8 t/ha/yr (for bare soils ca. 32 t/ha/yr for the Mediterranean zone and ca. 

17 t/ha/yr for the rest of Europe) (Cerdan et al., 2006) 

• Mean rates in Europe are ca. 3-40 t/ha/yr for actual soil erosion (Verheijen 

et al., 2009) 

• The main publication for soil erosion in Europe (Panagos et al., 2015c) 

found a mean erosion rate in EU-28 of 2.46 t/hayr for the potentially 

erosion-prone land cover in EU-287. However, it needs to be taken into 

account that CAPRI values refer only to agricultural land. We have 

calculated the average value for agricultural land uses from the Panagos et 

al. (2015c) results at 100 m resolution, using as mask Corine Land Cover-

2XX, and obtained an average value of 3.13 t/ha (see Table 11). 

 

Table 10 Values of average soil erosion from CAPRI (t/ha/yr) for EU-28 minus HR, CY and MT. 

Region 

level 
Simulation scenario 

WEIGHTED 

AVERAGE 
MAX MIN MEDIAN AVERAGE 

NUTS2 Base year 2008 5.3 112.6 0.09 2.3 7.1 

 CAPRI baseline 2025 5.3 119.1 0.09 2.3 7.3 

HSMU 
Base year 2008 5.3 1792.2 0.00 2.4 11.1 

CAPRI baseline 2025 5.3 1115.0 0.00 2.3 10.2 

 

Table 11 Values of average soil erosion from Panagos et al. (2015) in t/ha/yr, for EU-28, masked with CLC-

2XX. 

Region 

level 
Reference year 

WEIGHTED 

AVERAGE 
MAX MIN MEDIAN AVERAGE 

NUTS2 2010 3.13 25.7 0.14 2.2 3.4 

100 m2 2010 3.13 325 0.00   

 

According to the results by Panagos et al. (2015c) the CAPRI mean is too high 

and should be revised. The problem with the maximum erosion values is still 

more important. While according to Panagos et al. (2015c) the maximum at 

                                                   
7 The average rate of soil loss falls to 2.22 t/hayr if the non-erosion prone areas are included in the 

statistical analysis. For arable land, Panagos et al. (2015) found an average value of 2.62 t/hayr. 
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NUTS2 region is 25.7 (for IT93-Calabria), the CAPRI 2008 maximum is 112.6 

(IT13-Liguria), followed by 76.1 in (AT21-Carinthia). At high geographical 

resolution (HSMU), oscillations are even bigger, the maximum values almost 

reaching 1800 t/ha in a number of HSMUs in Slovenia in the base year. However, 

we have observed that these correspond to areas mainly of forest and shrub 

land, with no or very little agricultural area (those HSMU do not appear in 2025 

as they do not have UAA). The maximum in 2025 corresponds to 1,115.0 t/ha for 

a small HSMU in Liguria with vineyards and citrus fruits, followed by four HSMUs 

above 800 t/ha: three in  Slovenia, with fodder maize and grain maize and one 

in Tuscany with sunflower). These values are not possible, given that according 

to Maetens et al. (2012), maximum erosion values found on European 

experimental plots are 325 t/ha annually. Moreover, Panagos et al. (2015c) have 

imposed this value as the maximum soil loss rate to avoid model outliers (they 

had found less than 0.001% of pixels above this value).  

An explanation for the CAPRI high values is that the soil erosion indicator has 

been calculated for small patches of crop fields on high slope areas where there 

is a majority of non-agricultural land uses (e.g. the highest values correspond to 

HSUs in Slovenia mainly covered with forest, shrub land and other uses, and 

around 1% of the land has potatoes or maize). In the mountain regions in 

Austria, Liguria, Slovenia, only small plots have low-soil protecting crops and 

practices (e.g. vineyards), and these usually not in the most steep slopes or with 

the protection of terraces. For this reason, we suggest to follow the example of 

Panagos et al. (2015c) and cap the indicator at a maximum of 325 t/hayr.  

With this change the SiSLOS_perHa indicator value in Slovenia in the base year 

has changed from 44.67 t/hayr to 42.90 t/hayr (the value by Panagos et al. 

(2015c) is 14.61). 

 

4.4 Soil erosion thresholds 

4.4.1 The CAPRI shares indicator 

Apart from the use of average soil loss values, it is necessary to define which 

values can be considered acceptable and which can pose problems for the 

environment. Besides, using the average value at NUTS2 region might not show 

if there are areas with high risk erosion. For this reason, a set of three 

subdicators were designed in CAPRI, to show the area referred to relevant 
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thresholds. The area was classified according to the following soil erosion 

classes: 

1) <0.5 tons/ha 

2) <5.0 tons/ha 

3) >5.0 tons/ha 

Given the lack of information for interpretation of these thresholds, a small 

literature review has been performed to understand if they are relevant or 

should be revised.  

4.4.2 Literature review: soil formation, soil tolerance and soil 

erosion thresholds 

There has been much discussion in the literature about thresholds above which 

soil erosion should be regarded as a serious problem. This has given rise to the 

concept of ‘tolerable’ rates of soil erosion that should be based on reliable 

estimates of natural rates of soil formation. A good illustration of the problem of 

soil formation and soil tolerance is offered by Hurni (1983). Hurni states that 

“the destabilizing effects of soil erosion resulting from agricultural activities 

cannot be evaluated by soil erosion process studies alone. The rate of soil 

formation must be known so that maximum tolerable soil loss for cultivated 

slopes can be assessed. Two case studies, one in the Ethiopian high mountains 

and one in the mountains of Northern Thailand, are used to demonstrate the 

role of the various factors that influence stability. Despite moderate erosion 

rates, the Simen ecosystems in Ethiopia have suffered the greatest ecological 

damage through soil degradation processes. This threatens the food security of 

the present-day inhabitants. Reasons for this can be found in the inaccurate 

perception of soil erosion as a problem, and in the low soil loss tolerances of 

this high mountain environment. In contrast, high soil erosion rates on 

cultivated swiddens8 in Huai Thung Choa, Northern Thailand, have been clearly 

recognized by the local people; this is reflected in their shifting to swidden 

cultivation practices. Recent trends of reduced fallow periods, however, have 

resulted in accelerated soil degradation. Soil formation rates, nevertheless, are 

high enough for recovery once fields are abandoned. Use of a soil degradation 

ratio, defined as the soil loss divided by the soil loss tolerance9, was found to be 

                                                   
8
 Agricultural practice consisting on planting one (or more) year of crop after burning the natural vegetation, followed by 

several years of fallow, in which the regenaration of natural vegetation and soil takes place.   
9
 Soil tolerance (T) is defined here as the mean annual soil loss that a given cultivated slope can tolerate. It can be 

calculated as T=max(F1, min(F2, F3), being (F1) the formation rate of A horizon by accumulation on the soil surface; (F2) 
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a practical method of evaluating the destabilizing potential of soil erosion in 

agricultural ecosystems”. In Ethiopian mountains, soil formation rates during 

fallow periods take values of 0.1-0.4 t/ha for elevations above 3500m, 2 t/ha for 

elevations between 3000-3500, 4t/ha for elevations between 2500-3000 m and 

6 t/ha for elevations between 2000-2500 m (Hurni, 1983). The fact that high 

elevations are associated to lower tolerance levels leads to expect low tolerance 

in altitude areas, which are precisely areas where soil erosion can be more 

intense. However, soil formation and soil tolerance are also dependent on 

climatic conditions (rainfall, temperatures). Always according to Hurni (1983), in 

Thailand mountains, potential soil losses estimated from the RUSLE equation 

register 120 t/ha/yr on 40% slope. However, the climate allows soil formation 

rates of 10-12 t/ha/yr. This rate, in combination with the swiddens system 

consisting of 1 year crop + 10 years of fallow, allows the soil to recover.  

Values of soil loss tolerance in the United States are: 2 to 11 t/ha/yr 

(McCormack and Young, 1981); 5 to 12 (Schertz, 1983); 2.5-12.3 t/ha/yr (NCRS-

USDA, 2002), which is equivalent to ≈0.2–1 mm/yr of erosion (assuming a soil 

bulk density of 1,200 kg/m3). The suggested tolerance level for most soils in 

Ontario is 6.7 t/ha/yr or less (Stone and Hilborn, 2012). Researchers have 

expressed concern that T values themselves are set substantially higher than soil 

production rates, because of political and economic considerations (Larson, 

1981). 

In order to apply these concepts, it would be necessary to be able to estimate 

soil tolerance (soil formation rates) at Pan-European level, from climatic and soil 

type information. Verheijen et al. (2009) have tried to find tolerable erosion rates 

in Europe. According to them: “Ideally, soil formation models (e.g. Hoosbeek 

and Bryant, 1992 and Minasny and McBratney, 2001) would have been 

developed and validated to such an extent that for any soil type, under any land 

use, soil management practice, in any region, accurate estimates of soil 

formation rates could be derived. However, fundamental scientific knowledge 

on soil formation processes is still insufficient at present to support the use of 

mechanistic soil formation models for establishing tolerable rates of soil erosion 

in the context of environmental protection. Therefore, the most useful 

contribution that science can make to the policy process would be to arrive at a 

consensus on mean rates of soil formation and soil erosion. Considering soil 

formation rates by both weathering and dust deposition, it is estimated that for 

the majority of soil forming factors in most European situations, soil formation 

                                                                                                                                                     
the formation rate of A horizon from B horizon (from biological activity); (F3) the formation rate of B horizon by 

weathering of parent material into smaller particles.  
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rates probably range from ca. 0.3 to 1.4 t/ha/yr. Although the current agreement 

on these values seems relatively strong, how the variation within the range is 

spatially distributed across Europe and how this may be affected by climate, 

land use and land management change in the future remains largely 

unexplored. Future differentiation of soil formation rates for soil–land use–

climate combinations is needed, and quantitative pedogenesis modelling (e.g. 

Hoosbeek and Bryant, 1992 and Minasny and McBratney, 2001) may provide an 

appropriate methodology.” (Verheijen et al., 2009).  

Verheijen et al., 2009 report some of the factors affecting soil formation. For 

example, chemical weathering can be expected to increase where precipitation 

increases, particularly where the parent material is well draining. Soils formed in 

limestone or granitic lithology are reported to have formation rates towards the 

smaller part of the range, although the body of evidence is relatively small and 

more experimental research is urgently needed into soil formation rates for 

these lithologies, since they cover a substantial area in Europe. Soil formation by 

sedimentation in water is only significant in the floodplains of large river 

systems. Dust deposition is more intense in the Mediterranean areas close to 

the Sahel region. Goudie and Middleton (2001) report very low values in the 

Alps (0.002-0.004 t/ha/yr), low in Central France (0.01) and North-Eastern Spain 

(0.05), high in other Mediterranean regions (0.1 in Corsica and Southern 

Sardinia, 0.1-0.2 in Crete) and still higher in Pyrinees and some areas of the 

Aegean See (>0.3).  

Egli et al. (2013) have studied soil formation on Alpine soils. They have found 

that soil production and related tolerable erosion rates (i.e. 50–90 % of the soil 

production rate) are a strong function of time. Average soil production rate in 

alpine areas for relatively old soils (>10–18 kyr) is between 0.54 (±014) and 1.13 

(±0.30) t/ha/yr, for young soils (>1–10 kyr) between 1.19 (±0.44) and 2.48 

(±0.91) t/ha/yr and for very young soils (≤1 kyr) between 4.15 (±2.42) and 8.81 

(±5.20) t/ha/yr.10 Due to the fast glacier retreat after the Late Glacial Maximum 

(LGM), the surface age of most areas (having meadows) in the subalpine to the 

alpine range of the European Alps is near 10 to 18 kyr (Ivy-Ochs et al., 2004). 

European soils have in most cases an age of >10 kyr (Alewell et al., 2015).  

According to Eurostat (2016): «Soil formation processes and rates differ 

substantially throughout Europe. In some cases, rates of soil erosion larger than 

                                                   
10

 According to the same authors, measured recent soil erosion rates in alpine areas at intensively used slopes range 

from 6 to 30 t/ha/yr, while average catchment values for the Urseren Valley (using the model USLE plus soil loss due to 

landslides) resulted in an overall loss of 1.8 t/ha/yr (0.18 mm/yr). These values considerably exceed production rates of 

the soils. 
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1 t/ha/yr are regarded as tolerable from the wider perspective of society as a 

whole, for example for economic considerations or the preservation of soil 

functions. In Switzerland, the threshold tolerated for soil erosion is generally 1 

tonne per hectare per year, though this rate can be increased to 2 tonnes per 

hectare per year for some soil types (Schaub and Prasuhn, 1998). More recently, 

Verheijen et al. (2009) estimated the average soil formation rate in Europe to 1.4 

tonne per ha per year which is much lower than the soil loss rate. In general, 

losses above 1 tonne per hectare per year are generally considered as 

irreversible. Nevertheless, there may be a need to propose different thresholds 

of rates of soil erosion that are tolerable in different parts of Europe. However, 

this aspect needs further elaboration».  

According to Ecologic Institute and SERI (2010), which contains a wide literature 

review: «In conclusion, an exercise of setting regional or even local or site 

specific threshold levels of erosion would be valuable and more research is 

definitely needed in this regard. However the literature review and expert 

interviews carried out for this study show that a threshold value of 1 t /ha/ year , 

based on a comparison with mean natural soil formation rates, is generally 

accepted as a tolerable rate of soil erosion in our current socio-economic 

context. Site specific exceptions above and below this threshold are of course 

realistic and necessary in some cases. Indicators of a danger zone or of a zone 

of tolerable erosion are thus also related to soil formation indicators. (…) Recent 

research (Verheijen et al., 2009) leads to the conclusion that overall soil 

formation ranges from ca. 0.3 to 1.4 t /ha/ year. Therefore accepting a threshold 

of 1 t/ha/y, i.e. above the estimated average rate of soil formation, can critically 

be interpreted as a rather pragmatic approach to soil protection in order also to 

maintain current demand for soil productivity in Europe, e.g. food production».  

According to Morgan (2009), the tolerable soil loss threshold (T) formulated for 

Mediterranean environments is 10 T ha-1 yr-1. Borrelli et al. (2016) have 

calculated potential soil erosion rates in arable land at high resolution, finding 

that «the predicted soil erosion rates are still about twice the tolerable soil loss 

threshold (T) formulated for Mediterranean environments (10 T ha−1 year−1, 

Morgan, 2009)». 

4.4.3 Conclusions 

From the review performed in the previous section, it can be established that 

the task of setting individual thresholds or tolerance levels for all EU regions 

would be too complex at the moment. It would be more reasonable to set some 
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thresholds at EU-level or at large climatic areas (e.g arid or Mediterranean areas 

against rest of Europe).  

According to literature findings the soil formation rates in Europe are on 

average around 1.4 t/ha annually; in some cases 2t/ha. Thus 76% of the area in 

Europe is below this sustainable rate. According to a personal communication 

by Panagos, for scientific purposes, the following classes can be considered: 

0-1   t/ha per year: Low rate 

1– 2 : Sustainable rates    

2-5: Medium erosion rate 

5-10: High erosion rate 

>10: Severe soil erosion rate 

 

To limit it to 3 classes, mainly oriented for policy makers, the following classes 

can be used (Panagos et al., 2016): 

0-2: Sustainable 

2-10: Medium-High 

>10 :Severe 
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5 CONCLUSIONS 

For the quantification of environmental sustainability, at least two aggregate 

variables require assessment at farm level or high spatial resolution: agricultural 

land use diversity, and soil erosion. We performed a thorough review of the 

procedures used to calculate environmental indicators at high spatial resolution 

with the CAPRI model. Need for update and improvement was found for 

different stages of the procedure: 

 Quantification of a priori crop shares  

 Disaggregation of crop yield and farm inputs 

 Quantification of potential loss of soil through water erosion 

This report presents the results of feasibility studies on the possibility of 

improvements in those three stages. 

For the quantification of a priori crop shares, an update of the LUD model 

(Lamboni et al., 2016) is proposing several improvements on model 

performance and model quality, which overall were shown to generate better 

prediction both of ‘frequent’ and ‘less frequent’ crops; the latter mainly through 

the introduction of environmental suitability ranges. 

The disaggregation of crop yields can be improved through an update of the 

prior crop yield estimates obtained from a crop model, but in particular also 

through using results from the SUSFANS yield gap analysis. These results allow 

that the fertilization rates beyond crop needs can be ‘disconnected’ from crop 

yield and linked to the yield gap estimate at high spatial resolution, so that 

over-fertilization is estimated at those units where nutrient input does not limit 

crop growth. 

Potential soil losses by water erosion was found to be over-estimated for fallow 

land in non-arid regions. An update of the calculation procedure is proposed, 

accompanied with a comprehensive literature review not only on soil erosion in 

Europe for validating CAPRI estimates, but also on soil erosion thresholds that 

can be used to differentiate sustainable erosion rates from medium and severe 

erosion rates.  
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7 ANNEXES 

7.1 Annex 1 – Spatial layers available for the CAPRI 

model 

The minimum spatial unit of the HSU data set is the 1km2 grid cell. To facilitate 

the link between additional spatial information required for different purposes 

(e.g. the mapping of spatial environmental indicators) all data sets are linked at 

a resolution of 1km2 via a “Unified Spatial Data Characterization Identifier 

(USCIE). The underlying 1km2 grid builds on the recommendations from the 1st 

Workshop on European Reference Grids concerning grid alignment and 

projection. (References: D2.8.I.2 INSPIRE Specification on Geographical Grid 

Systems – Guidelines 

http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_Specifica

tion_GGS_v3.0.1.pdf, Short Proceedings of the Workshop on European 

Reference Grids, Ispra, 27-29 October 200311). 

Currently the following spatial information is linked via the USCIE: 

 MARS meteorological 25km2 grid (EC JRC AGRI4CAST (2012): 

Interpolated Meteorological Data. European Commission Joint Research 

Centre, Institute for Environment and Sustainability, Monitoring 

Agricultural Resources (MARS) Unit). 

http://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx. 

 LUCAS survey data for the years 2001, 2003, 2006, 2007, 2009 and 

2012. While data until 2007 is unpublished the 2009 and 2012 survey 

data can be accessed at 

http://ec.europa.eu/eurostat/web/lucas/data/database) 

 Irrigated area (% of the USCIE grid cell) in the year 2000 based on 

Siebert, S., Hoogeveen, J., & Frenken, K. (2006). Irrigation in Africa, Europe 

and Latin America. Update of the Digital Global Map of Irrigation Areas 

to Version 4. Frankfurt Hydrology Paper 5. Institute of Physical 

Geography, University of Frankfurt (Main), Germany and Food and 

Agriculture Organization of the United Nations, Rome, Italy. 

http://www.fao.org/nr/water/aquastat/irrigationmap/index50.stm Map 

Version 4.0. 

                                                   
11 http://eusoils.jrc.ec.europa.eu/projects/alpsis/Docs/ref_grid_sh_proc_draft.pdf  

http://eusoils.jrc.ec.europa.eu/projects/alpsis/Docs/ref_grid_sh_proc_draft.pdf
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 Land use/cover data. Data source: European Topic Centre on Spatial 

Information and Analysis (2012): CORINE Land Cover 2006 raster data at 

250m resolution - version 16 (04/2012), http://www.eea.europa.eu/data-

and-maps/data/corine-land-cover-2006-raster-2. European Topic Centre 

on Land Use and Spatial Information (2011): CORINE Land Cover 2000 

raster data at 250m resolution - version 15 (08/2011)) CLC2000 data has 

been applied only in the case of Greece. http://www.eea.europa.eu/data-

and-maps/data/corine-land-cover-2000-raster-1. European Space 

Agency (2008): GlobCover Land Cover v2 2008 database. European Space 

Agency GlobCover Project, led by MEDIAS-France. 2008), 

http://due.esrin.esa.int/page_globcover.php. GLC2006 data has been 

applied in the USCIE/HSU2 domain for areas where CLC2000/2006 was 

not available. 

 HSMU data set. Leip, A., Marchi, G., Koeble, R., Kempen, M., Britz, W. & 

Li, C. (2008). Linking an economic model for European agriculture with a 

mechanistic model to estimate nitrogen and carbon losses from arable 

soils in Europe. Biogeosciences, 5 (1), 73–94. Copernicus Publications. 

doi:10.5194/bg-5-73-2008. Data available at 

ftp://mars.jrc.ec.europa.eu/Afoludata/Public/all_datasets.html Dataset 

251. 

 Altitude and slope. Jarvis, A., Reuter, H.-I., Nelson, A., Guevara, E., 2008. 

Hole-filed srtm for the globe version 4. Available from the CGIAR-CSI 

SRTM 90 m database. Available at http://srtm.csi.cgiar.org. 

 Forest cover (% of the 1km2 grid cell) for the years 2000 and 2006. 

The forest cover is based on a high-resolution (25m) pan-European forest 

cover maps for the year 2000 and 2006. Kempeneers, P., Sedano, F., 

Seebach, L., Strobl, P., San-Miguel-Ayanz, J. (2011) Data Fusion of 

Different Spatial Resolution Remote Sensing Images Applied to Forest-

Type Mapping. IEEE Transactions on Geoscience and Remote Sensing, 49 

(12), pp. 4977-4986. http://forest.jrc.ec.europa.eu/download/data/forest-data-download/ 

 Global Homogeneous Response Units. Skalsky, Rastislav; Tarasovicová, 

Zuzana; Balkovic, Juraj; Schmid, Erwin; Fuchs, Michael; Moltchanova, 

Elena; Kindermann, Georg; Scholtz, Peter; McCallum, Ian (2012): Global 

Homogeneous Response Units. doi:10.1594/PANGAEA.775369 

http://srtm.csi.cgiar.org/
http://forest.jrc.ec.europa.eu/download/data/forest-data-download/
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 Annual dry and wet  deposition for the years 2006 – 2010 of reduced 

and oxidized nitrogen as well as oxidized sulphur as mg(N,S) m-2. 

The original data at the 50km by 50km EMEP grid resolution was 

provided by D. Simpson (pers. comm. July 2014). Dry deposition is 

distinguished for 5 different land cover classes i.e. coniferous forest, 

deciduous forest, cropland, seminatural vegetation and water surfaces. As 

the land use/cover information in the EMEP data set is different from the 

land use/cover data set included in the USCIE data set (s. above), the dry 

deposition has been re-mapped to the land use/cover of the USCIE data 

set. However the total dry deposition of a specific compound within the 

EMEP grid cell remained un-changed.  

 

7.2 Annex 2 – Improvement of soil erosion estimates 

(imap 8) 

7.2.1 Improvement of the Ccrop/cover factor 

In the 2012 version of soil erosion indicators, the Cfactor was just based on 

Ccrop/cover while the effect of management via the Cmanagement factor was 

ignored. This factor had a single value per crop for all EU. In the current version, 

these values have been updated according to the literature. For permanent 

crops and grasslands a differentiation of the value per crop and country has 

been implemented, while for arable crops still one EU-wide value is used.   

The main source used for the update of the C-factor is the data provided by the 

JRC/soil unit used for the article by Panagos et al. (2015a). For the crops where it 

was not available, the previous CAPRI value was used, with the following 

exceptions: 

 For some permanent crops (APPL, CITR, OFRU, OLIV, TABO) the values 

per country by Panagos et al. (2015a) which were quite low (on average 

0.22) have been proportionally increased in order to obtain a higher 

value, more in line with the 0.35 of Bosco and Rigo (2013) and de Vente 

et al. (2009). Also Rousseva et al. 2003 found a value of 0.42 for fruit trees 

in Bulgaria, still higher than the 0.39 obtained for Bulgaria. However, 

these factors should be reviewed. 
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 Oats: as this cereal is not cold resistant, it cannot be planted in autumn 

but in spring in northern countries. We assume therefore that oats is a 

winter cereal in southern countries and a spring crop for colder countries, 

and used the corresponding factors.  

 MAIF (fodder maize): the value by Wall et al. (2002) was used, higher than 

that of grain maize because of its earlier harvest. 

 OFAR (other fodder on arable land, which includes temporary grass, 

other silage cereals and other fodder plants such as alfalfa): a value of 

0.10 was used for most countries, a higher value of 0.15 for 

Mediterranean countries (CY, ES, EL, IT, MT, PT). 

 OCER (other cereals including millet, triticale, buckwheat, sorghum 

(except fodder sorghum) and summer cereal mix have been assigned a 

value of 0.28, similar to that of oilseeds, higher than those of winter 

cereals 0.20-0.22 and lower than that of dry pulses (0.32). 

 GSET(Set aside obligatory used as grassland): the same CC factor as for 

intensive grassland (GRAI). CM=1. 

 TSET(Set aside obligatory fast growing trees): CC=0.3 in order to have an 

intermediate value between GSET (0.09) and FALL and ISET (0.5). In this 

way, it is close to the value for nurseries (0.296).  

7.2.2 Description of the Cmanagement and P factors 

Recent research (2015a, 2015b) have estimated the C and P factors for all EU. 

Based on their results and in other literature, we next explore the possibilities of 

improvement of the soil erosion indicator by including also the Cmanagement 

and the P factors.  

Following Panagos et al (2015a), the Cmanagement factor is the result of the 

product of three subfactors: 

𝐶𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 = 𝐶𝑀𝑡𝑖𝑙𝑙𝑎𝑔𝑒 ∙ 𝐶𝑀𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 ∙ 𝐶𝑀𝑐𝑎𝑡𝑐ℎ𝑐𝑟𝑜𝑝 

When the exact practices on each crop are not known, but the total area on 

which these practices are applied is available, the three components of the 

Cmanagement factor to be applied to arable crops can be calculated as follows 

(Panagos et al., 2015a):  

𝐶𝑀𝑡𝑖𝑙𝑙𝑎𝑔𝑒 = %𝑎𝑟𝑎𝑏𝑙𝑒𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 ∙ 1.0 + %𝑎𝑟𝑎𝑏𝑙𝑒𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑟𝑖𝑑𝑔𝑒 ∙ 0.35

+ %𝑎𝑟𝑎𝑏𝑙𝑒𝑛𝑜 𝑡𝑖𝑙𝑙 ∙ 0.25 

𝐶𝑀𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 = (1 − %𝑎𝑟𝑎𝑏𝑙𝑒𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠) ∙ 1.0 + %𝑎𝑟𝑎𝑏𝑙𝑒𝑐𝑟𝑜𝑝𝑠𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 ∙ 0.88 

𝐶𝑀𝑐𝑎𝑡𝑐ℎ𝑐𝑟𝑜𝑝 = (1 − %𝑎𝑟𝑎𝑏𝑙𝑒𝑐𝑎𝑡𝑐ℎ𝑐𝑟𝑜𝑝) ∙ 1.0 + %𝑎𝑟𝑎𝑏𝑙𝑒𝑐𝑎𝑡𝑐ℎ𝑐𝑟𝑜𝑝 ∙ 0.80 
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Where %arablex is the arable area under a certain management practice X on 

total arable crops area. Catch crops are crops sown specifically to protect bare 

soil in winter (and early spring) after the harvesting of summer crops.  

The previous equations would apply only to arable crops. Land left fallow and 

setaside is a special case. Given that by definition there is no standard crop 

coverage during the summer, the management factor is also affected by the 

summer cover.  

The literature does not distinguish specific management factors for land left 

fallow. Based on associations with other crops and practices, we propose to 

estimate it by adding to the standard management factors a factor 

CMsummercover describing the situation during the summer period. The 

determination of this factor depends on the share of fallow land being left 

rough during summer, or covered with crop residues or green cover: 

𝐶𝑀𝑓𝑎𝑙𝑙𝑜𝑤 = 𝐶𝑀𝑡𝑖𝑙𝑙𝑎𝑔𝑒 ∙ 𝐶𝑀𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 ∙ 𝐶𝑀𝑐𝑎𝑡𝑐ℎ𝑐𝑟𝑜𝑝 ∙ 𝐶𝑀𝑠𝑢𝑚𝑚𝑒𝑟𝑐𝑜𝑣𝑒𝑟 

𝐶𝑀𝑠𝑢𝑚𝑚𝑒𝑟𝑐𝑜𝑣𝑒𝑟

= %𝑓𝑎𝑙𝑙𝑜𝑤𝑟𝑜𝑢𝑔ℎ ∙ 1.0 + %𝑓𝑎𝑙𝑙𝑜𝑤𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 ∙ 0.88 + %𝑓𝑎𝑙𝑙𝑜𝑤𝑔𝑟𝑒𝑒𝑛𝑐𝑜𝑣𝑒𝑟

∙ 0.5 

 

In order to justify the values of the selected factors for fallowland, we propose 

three examples. If a fallow land was planted with rye in the winter which is left 

for the summer, its final Cfactor would be Cfactor= Ccrop/coverx CMfallow = 

Ccrop/coverx CMtillagex CMresidues x CMcatchcrop xCsummercover=0.5 x1 x 1x 0.8 x 0.5 = 0.2, 

therefore equal to the Cfactor of rye (0.2), a cereal that is usually planted in 

autumn. If it was planted with grass not tilled in the early autumn and left like 

that for the whole year: Cfactor= CC x CMtillage x CMresidues x CMcatchcrop  x 

CMsummercover=0.5 x 0.25 x 1 x 0.80 x 0.5=0.5x0.1=0.05. According to the literature 

review, grasslands have Cfactors between 0.03 and 0.1, therefore this value for 

fallowland coverd with grass all th year can be considered acceptable. A last 

example: if the fallow or setaside area was left untouched after the previous year 

crop, it could be considered no till, with crop residues in winter and in summer, 

therefore Cfactor = CC x CMtillage x CMresidues x CMcatchcrop  x CMsummercover = 0.5x 0.25x 

1 x 0.88 x0.88 = 0.5x0.19 = 0.1.  

The CMfactor values we have just described are collected in Table 12.  
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Table 12 Cmanagement factor values from the literature 

 Management practice CM Factor 

Tillage 

practice 

Conventional tillage 1.0 

Conservation/ridge tillage (Reduced tillage) 0.35 

No till 0.25 

Residues 

Rough cultivated surface (fall ploughed or 

disced) (RS) 
1 

Winter vegetal cover (including stubble and 

mulch) and spring plough (WSM) 
0.88 

Winter 

green cover 

(catch 

crops) 

Rough cultivated surface (fall ploughed or 

disced) (RS) 
1 

Winter green cover (WGC) (Ccover) 0.80 

Summer 

cover (for 

fallow, use 

with a 

CC=0.5) 

Rough cultivated surface (fall ploughed or 

disced) (RS) 
1 

Summer vegetal cover (including overwintered 

stubble and mulch) (SSM) 
0.88(1) 

Summer green cover (SGC) 0.5(2) 

Source: Panagos et al. (2015a) (1) Estimated by authors, see text. (2) Estimated 

from crops used for summer green cover (e.g. rye).  

 

Following Panagos et al (2015b), the estimation of the support practices P-factor 

can be calculated as:  

𝑃 = 𝑃𝐶 ∙ 𝑃𝑆𝑊 ∙ 𝑃𝐺𝑀 

Where PC is the contouring factor, PSW the stone walls factor and PGM the grass 

margins factor. 

7.2.3 Actual implementation of CM in CAPRI 

The objective has been to calculate the CM subfactors when possible, otherwise 

to use the average values at region level from the literature. Given that Panagos 

et al. (2015a) have calculated the average Cmanagement factors for arable land at 



SUSFANS 

 

Report No. D4.6 

 

 

67 

 

NUTS2 level, and Panagos et al. (2015b) the P factors, their output values can be 

used in CAPRI (see Annex 1 with CM factors for arable land12 and Annex 2 with P 

factors). The average regional values have been used in all CM subfactors except 

for CMcatchcrop and CMsummercover. 

In CAPRI, data on farm practices were not available for endogenous 

implementation of CM factor. However, since the CAPRI modelisation of 

greening measures, the catch crop winter cover has been endogenously 

included in the model. Therefore, we have endogenised the estimation of 

CMcatchcrop.  

According to personal information by Gocht (2016), catch winter crop (CATC) 

can be activated in CAPRI when non-winter cover crops are in the crop 

rotation13. However, as we yet do not know which crops have been considered 

winter crops, we have applied it to arable crops area except fallowland and 

grassland. Anyway, this should not have an impact on the final value, as the total 

CATC surface to which CMcatchcrop applies remains the same. Therefore, CMgreencover 

is calculated from the share of catch crops area on total arable crops area (not 

fallow nor grassland). The values of CMtillage and CMresidues, exogenous, have been 

taken from Panagos et al. (2015a) at NUTS2 regions.  

Please note that CATC has not been disaggregated to HSMU units, therefore, all 

the CM factors are available only at NUTS2 level. Different scenario impacts 

between HSMU cannot be attributed to the change in management practices 

but only to the change in crop distribution and thus the linked with the 

environmental factors in the RUSL equation. 

A possible source of information on farming practices, which could be used for 

the implementation of CM, is the GAEC features. In the GAEC features, some 

countries must apply certain soil conservation practices. This would allow 

implementing CMresidues, CMcatchcrop and CMsummercover factors for arable crops and 

fallow. According to their GAEC, some countries require the application of the 

practices only on fallow land, or only on cultivated land, or only for certain types 

of farms, zones, or everywhere.  

In the case of the application of GAEC, the formula would be: 

                                                   
12

 It is to be pointed out that the CM factors by Panagos et al. (2015) include also what we have called CMsummercover, 

the additional factor applied to fallow land. 
13

 In the policy folder in dat there is a file called wintercover.gms. It defines the maximum shares of wintercover by 

activity (100 for grass). In the supply model optimization, the potential catch crop area is calculated endogenously based 

on those shares by farm type (or by NT2 region), which yields the maximum area available for CATC and hence for 

complying with the cropping obligations in the greening policy. The catch crops per crop would be an approximation, 

using the available area per crops and the total area of CATC. 
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𝐶𝑀𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠−𝐺𝐴𝐸𝐶 ∙

= {
0.88 𝑓𝑜𝑟 𝑎𝑟𝑎𝑏𝑙𝑒 𝑙𝑎𝑛𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝐺𝐴𝐸𝐶 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝑣𝑒𝑔𝑒𝑡𝑎𝑙 𝑐𝑜𝑣𝑒𝑟

1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡 𝑜𝑓 𝑐𝑟𝑜𝑝𝑠  𝑎𝑛𝑑 𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠
 

 

𝐶𝑀𝑐𝑎𝑡𝑐ℎ𝑐𝑟𝑜𝑝−𝐺𝐴𝐸𝐶 ∙

= {
0.80 𝑓𝑜𝑟 𝑎𝑟𝑎𝑏𝑙𝑒 𝑙𝑎𝑛𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝐺𝐴𝐸𝐶 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝑐𝑎𝑡𝑐ℎ 𝑐𝑟𝑜𝑝

1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡 𝑜𝑓 𝑙𝑎𝑛𝑑 𝑐𝑜𝑣𝑒𝑟 𝑎𝑛𝑑 𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠
 

 

𝐶𝑀𝑠𝑢𝑚𝑚𝑒𝑟𝑐𝑜𝑣𝑒𝑟−𝐺𝐴𝐸𝐶 ∙

= {

0.5 𝑓𝑜𝑟 𝑓𝑎𝑙𝑙𝑜𝑤 𝑙𝑎𝑛𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝐺𝐴𝐸𝐶 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝑣𝑒𝑔𝑒𝑡𝑎𝑙 𝑐𝑜𝑣𝑒𝑟 
0.88 𝑓𝑜𝑟 𝑓𝑎𝑙𝑙𝑜𝑤 𝑙𝑎𝑛𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝐺𝐴𝐸𝐶 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝑠𝑡𝑢𝑏𝑏𝑙𝑒 𝑜𝑟 𝑚𝑢𝑙𝑐ℎ 𝑐𝑜𝑣𝑒𝑟 

1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡 𝑜𝑓 𝑐𝑟𝑜𝑝𝑠 𝑎𝑛𝑑 𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠
 

 

This implementation of the factors would be a proxy, given that some farms 

might be leaving farm residues in those countries where it is not compulsory, so 

in these countries the indicator would be underestimated. Moreover, in some 

countries it is compulsory only when the slope is above a certain threshold, so 

this should be combined with the slope of the HSMU.  

 

In CAPRI, in spite of the lack of precision of this method, we have applied it only 

for the calculation of CMsummercover, given that there was no specific value for 

this factor by Panagos et al. (2015a). For fallow-land and set-aside (FALL, ISET 

and VSET), the management factor has been calculated as:   

𝐶𝑀
𝑓𝑎𝑙𝑙𝑜𝑤

= 𝐶𝑀𝑡𝑖𝑙𝑙𝑎𝑔𝑒
𝑎𝑟𝑎𝑏𝑙𝑒𝑁2 ∙ 𝐶𝑀𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠

𝑎𝑟𝑎𝑏𝑙𝑒𝑁2 ∙ 𝐶𝑀𝑐𝑎𝑡𝑐ℎ𝑐𝑟𝑜𝑝
𝑎𝑟𝑎𝑏𝑙𝑒𝑁2 ∙ 𝐶𝑀𝑠𝑢𝑚𝑚𝑒𝑟𝑐𝑜𝑣𝑒𝑟

𝑓𝑎𝑙𝑙𝑜𝑤
 

 

Where: 

𝐶𝑀𝑠𝑢𝑚𝑚𝑒𝑟𝑐𝑜𝑣𝑒𝑟
𝑓𝑎𝑙𝑙𝑜𝑤

=

{
0.5 𝑓𝑜𝑟 𝐴𝑇, 𝐷𝐾, 𝐹𝐼, 𝐹𝑅, 𝐿𝑇, 𝑁𝐿 (𝐺𝐴𝐸𝐶 𝑖𝑚𝑝𝑜𝑠𝑒𝑠 𝑎 𝑠𝑢𝑚𝑚𝑒𝑟 𝑐𝑜𝑣𝑒𝑟)

 
1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠                                                                   

  

And the other three factors being the average regional value by Panagos et al. 

(2015a).  

Please note that this method can result in an overestimation of the 

Cmsummercover factor for other countries where we have assumed 
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CMsummercover=1 but the fallow soil or part of it could have a green cover 

during the summer. 

7.2.4 Implementation of the P factor in CAPRI 

The support practices factor P (soil conservation and prevention practices 

factor), has been subdivided in three subfactors by Panagos et al. (2015b): the 

contouring, the stone walls and the grass margins factors. Pcontouring is 

dependent on the slope, so the contour farming factor could potentially be 

calculated in function of the farm slope (for the countries where this GAEC 

measure is applied, and also for scenario analysis). The grass margins, and stone 

walls or terraces factors will be difficult to implement for lack of information.   

Given the limited possibilities for the calculation of these factors, it was more 

advisable to use the values per region by Panagos et al. 2016b.  

 

 


