

Advances in long-run models

Thomas Heckelei, Catharina Latka

4th SUSFANS stakeholder core group workshop, Amsterdam Airport Schiphol 06 June 2018

Advances in long-run models

	GLOBIOM	CAPRI	MAGNET				
Sup	Enhanced crop supply specification	Improved yield responses to fertilizer application rates	Differentiated meat sector				
	Fish and aquaculture modelling						
De ma nd		Extended nutrient inventory	Socio- economic detail & nutrition module				
	Link to SHARP model (forthcoming)						

Advances in long-run models – importance for analysing sustainable food and nutrition security

- Increased
 accuracy in
 sustainability
 metrics
 related to
 agricultural
 production
 and env.
 impacts
- Better capture of diets
- Synergies/ Trade-offs: sustainability and nutrition

	GLOBIOM	CAPRI	MAGNET			
Sup ply	Enhanced crop supply specification	Improved yield responses to fertilizer	Differentiated meat sector			
4	□ Fish an	application rates d aquaculture me	odelling	•		
De ma nd		Extended nutrient inventory	Socio- economic detail & nutrition module	•		
4	Link to SHARP model (forthcoming)					

- Fish part of healthy diet
- Competition for land (feed)
- Preference shift towards seafood

Supply advances in GLOBIOM – Enhanced crop supply specification

- New set of EPIC crop growth simulations ("Hypercube")
 - → better representation of intensification gradients
- Elasticity estimation based on Bayesian Vector Autoregression
 - → renewed crop supply elasticities governing crop expansion

c) Fit to FAO: Hypercube vs. EPIC-BOKU (Wheat)

Source: Heckelei et al. 2018

Supply advances in GLOBIOM – Enhanced crop supply specification

- Calibration procedure revised
- → model outputs aligned with reported cropping pattern statistics

Illustration of calibration results for the case of USA

Source: Heckelei et al. 2018

Supply advances in CAPRI – Improved yield responses

- Yield technology
 specification in CAPRI revised depending on regional yield gaps
 observed
- Improved yield response to fertilizer application rate

Supply advances in GLOBIOM – Fish and aquaculture modelling

Supply advances in CAPRI – Fish and aquaculture modelling

Inclusion of aquaculture in CAPRI database

Conceptual framework of the CAPRI fish module

Source: Chang et al. 2018

Supply advances in CAPRI – Fish and aquaculture modelling

 Overcoming inconsistencies between data sources (FAOSTAT FBS and FAO FISHSTAT)

Original and consolidated 1050 pelagic fish data of Denmark 350 (thousand tons)

Source: Chang et al. 2018

Supply advances in MAGNET – Differentiated meat and fish sectors

- Differentiation of primary and processed livestock sectors
- Extended fish sector representation
 - Wild catch
 - Aquaculture
 - Fish processing sectors
 - Feed (explicitly modelled)
 - Competition for feed between aquaculture and cattle sectors

Demand advances in CAPRI – Extended nutrient inventory

- Reported as daily intakes per capita
- Based on commodity nutrient data from the
 - Composition

USDA Food

Database

	Added
CaloriesProteinFat	 Fiber Sugar Calcium Iron Magnesium Potassium Sodium Zinc Selenium Vitamins (A, C, D, E, B1, B2, B6, B12) Folate Saturated fatty acids Mono-unsaturated fatty acids Poly-unsaturated fatty acids

Demand advances in MAGNET – Socio-economic detail

Adding a household layer to MAGNET using micro data

→ Direct link
from macro
variables to
micro level
impact

Source: Kuiper et al. 2017

Demand advances in MAGNET – Nutrition module

GENuS nutrition module: to assess nutrition of diets and constrain purchases

Advances in all long-run models – Ongoing work

- Fish and aquaculture modelling
 - Trade of fish and aquaculture products
 - Policy simulations and foresight (e.g. maximum sustainable yield)
- Link to SHARP model

GLOBIOM CAPRI MAGNET

Long-run macro models

SHARP

Diet micro model

Pillar 2 Paper – a joint activity of SUSFANS and AGCLIM50 II

Recent AGCLIM50 II activities

GLOBIOM	CAPRI	MAGNET	IMAGE			
Business as usual (SSP2)						
6 mitigation scenarios			Carbon prices	Non-CO₂ GHGE	J.	
1 diet scenario				max. animal kcal	Non-CO ₂ GHGE	J.

Pillar 2 Paper – a joint activity of SUSFANS and AGCLIM50 II

- Idea: Understand trade-offs and complementarities between Climate Change mitigation and diet preference shift regarding sustainability impacts
- Here comparison between baseline and combination of strongest mitigation with diet shift
- Diet shift: imposing recommendation (USDA, 2015) → 428 calories of animal products

Pillar 2 Paper – a joint activity of SUSFANS and AGCLIM50 II

References

Chang, C.-Y., Witzke, H.-P., Latka, C. 2018. A Model for Data Consolidation of the Fish Market in CAPRI. To be presented at 30th International Conference of Agricultural Economists, Vancouver, July 28th – August 2nd 2018.

Heckelei, T., Batka, M., Chang, C.-Y., Havlík, P., Kuiper, M., Latka, C., Leclere, D., Tamas, L., 2018. Enhanced modelling of sustainable food and nutrition security: food supply and use of scarce resources. Deliverable 9.3 of the SUSFANS project H2020 / SFS-19-2014: Sustainable food and nutrition security through evidence based EU agro-food policy, GA no. 633692.

Kuiper, M., Oudendag, D., Bartelings, H., Shutes, L., Verma, M., Tabeau, A., 2017. Enhanced modelling of sustainable food and nutrition security: food consumption and nutrition behaviour of European households. Deliverable 9.2 of the SUSFANS project H2020 / SFS-19-2014: Sustainable food and nutrition security through evidence based EU agro-food policy, GA no. 633692.

